NGS panel


Why Childhood Cancers Need Their Own Gene Panel: Tim Triche

When we first talked with Tim Triche of LA Children's Hospital, we found out he was a bit of an outlier among cancer researchers. He was an advocate for poking around in the non-coding RNA.

Today we welcome Tim back to the show to talk about a new gene panel that he has designed specifically for childhood cancers. It’s a first of its kind and was modeled quite closely on the gene panel for the NCI’s MATCH trial. The new panel has both a DNA and an RNA component, and the RNA side is by far the biggest.

"There are 1,400 different amplicons on this panel looking for RNA fusions. Thermo Fisher tells me it’s the most ambitious RNA panel that they’ve ever undertaken," Tim says in today's interview.

"When 100 cancer patients walk in your office, then 100 cancer patients walk in your office," says Tim, quoting a common line in the field that points to the uniqueness of every cancer.

Yet even though every cancer is different, certain biological commonalities combined with better sequencing tools is enabling the design of new gene panels to guide in diagnosis and treatment. More and more a cancer is looked at based on the drug that might treat it rather than the organ in which it grows. The new panel can guide this treatment.

Some of the most important targets on the panel are RNA fusion transcripts. What are they, and why are they so important for helping kids?

Childhood cancers come from inherited mutations, whereas most adult cancers have to do with the skin or the linings of the organs due to mutations caused by environmental impacts. Fusion transcripts are very common in the youth cancers and have been a big part of routine diagnostics.

If a mutation is there early in life, is it likely to turn into cancer sooner rather than later? Yes, says Tim.

“If you look at the incidence of childhood tumors, there’s a big bump in the first months or year or two of life, and then they disappear thereafter."

Additional benefits from these new next gen sequencing panels are that they can work with very small “real world” samples of tumor tissue, and they can also be used as discovery tools. Tim says the panel, called OncoKids, is ready to go for frontline therapy, and is hoping to get the word out to oncologists everywhere.

Thermo, Pfizer, and Novartis Pull Off a First for NGS in Lung Cancer

Today we get to bring you a feel good story, one of the major achievements so far in precision oncology. Three large companies—Thermo Fisher, Pfizer, and Novartis—put aside their differences to come together for patients.

The patients are those who suffer from non-small cell lung cancer. In June, the FDA approved for the first time an NGS panel with multiple genes for multiple drugs that treat this kind of cancer.

“It’s groundbreaking for patients, because instead of having to wait for a hierarchal testing approach to their cancer, this one test could be able to give the answer for the patient."

By hierarchical, Annie Martin, the VP Global Head of Precision Medicine at Novartis, means the usual stepwise approach to testing for patients with this cancer. Typically patients are tested for first EGFR, followed by ALK, followed by ROS1, followed by BRAF. Now, thanks to a new NGS panel out by Thermo, all of these tests will be done at once and has been approved for various therapies.

In addition to Annie, we’re also joined by Thermo’s Joydeep Goswami, President of Clinical Next Generation Sequencing and Oncology at Thermo Fisher and by Hakan Sakul, VP of Diagnostics at Pfizer to talk about their collaboration.

How did Thermo decide on this panel, and what possible future uses to do they see? And how did the three large corporations—one diagnostics and two pharmas--come together to pull this off?

Join us with three of the industry’s leaders as we uncover the work behind a major milestone for precision oncology.



New to Mendelspod?

We advance life science research, connecting people and ideas.
Register here to receive our newsletter.

or skip signup