Eric Schadt and Sema4 Try the Consumer Model with Newborn Screening Panel

"We like to refer to it as consumer initiated, but physician supervised,” says Eric Schadt today when asked if his new test is direct-to-consumer.

Eric is the Dean for Precision Medicine at the Icahn School of Medicine at Mount Sinai in New York and since 2016 has served as CEO of Sema4, a spinoff that he founded out of the Mount Sinai Health System. Sema4 launched a newborn screening panel, Sema4 Natalis, in February of this year covering over 190 disorders.

With 400 people already employed, Sema4 is based largely on genetic testing, data science, bioinformatics, and software development teams that were built up at Mount Sinai prior to the spinout. New panels will be marketed directly to parents around the country, many of whom have already bought other prenatal screening tests from Sema4.

From 2011 to 2017, Eric served as the Founding Director of the Icahn Institute for Genomics and Multiscale Biology at Mount Sinai. He says he founded Sema4 to achieve a greater scale than could be had within a single hospital system. For him and Sema4, the end game is to "partner with" tens of millions of patients for ongoing studies. He calls it his "growth hack" strategy.

The Natalis panel is a practical place to start. Many of the additional rare childhood disorders that expand the panel beyond the conventional heel prick testing of 30-50 disorders are the result of new research and the latest technology and are a no brainer. This will bring some uniformity across states. And the new testing can be done from a cheek swab rather than the more invasive heel prick.

Still, some argue, Sema4 Natalis really amounts to doing research on parents. For the panel includes cancer risk tests as well.

Does Eric plan to do any follow up studies with parents? Mount Sinai is the sole owner of Sema4. Has any other major healthcare provider made a play similar to this?

State of Sequencing 2018 with Keith Robison, Omics! Omics! Blogger

Sequencing geeks are fresh off the trail from AGBT, and it’s time for our annual look at the sequencing tools space. This year we sit down with the longtime Omics! Omics! blogger, Keith Robison, who not only can answer all your questions about the topic, he even knows which sequencer you’re using right now, and in which department.

Keith jauntily runs through the Big 3--Illumina, Pac-Bio, and Oxford Nanopore--and has a few odds and ends to say about the "niche developers."

We finish by asking Keith what new trends and new instruments he's looking at. He says his son is a senior in high school where Keith has offered to go in and demonstrate the MinIon nanopore sequencer.

"Imagine if the next generation of kids all learns sequencing on this little device. It starts becoming a practical reality where kids in high school--even middle school--learn sequencing and then learn data analysis."

The Flongle Generation, anyone?

Direct RNA-Seq Project Shows Nanopore Sequencing Can Reveal New Insights into Basic Biology: Winston Timp, JHU

Nanopore sequencing has arrived. Passing test after test this past year--including one we discuss today--this technology which was being hyped decades ago is delivering on its promise.

Winston Timp joins us today. He's an assistant professor at Johns Hopkins and one of the leaders on a recent large scale project to directly sequence RNA on an array of nanopores. Winston's is the first in a series of shows we've lined up with users of Oxford Nanopore's technology.

Why RNA-seq? Hasn’t this been done for years?

Yes, says Winston, but in the past no one has been looking at the RNA itself. They’re usually making cDNA from the RNA and sequencing that.

“One of the big advantages to nanopore sequencing, is that you can characterize any polymer you can put in the pore.”

Nanopore sequencing is polymer agnostic.

So what good does it do to look at the RNA directly? Ever heard of epitranscriptomics? Winston has worked for a while on DNA methylation in his lab. Now he’s looking at RNA methylation. Not only is he seeing basic biology that we've never seen before (unique isoforms, exon connectivity that has been imputed by informatics but never seen directly), he’s coming up with new translational questions for health and disease.

When we started Mendelspod seven years ago, the next gen sequencing race was in full swing. It was all about the push to bring down the price of sequencing. The lower cost brought an excitement to the world of biology with all the new projects it made possible. But we found out there were was a major limitation to the technology. Read length. Over the past couple years, PacBio paved a whole new world with their long reads that enabled many new genomic projects. BioNano gave us the big picture with their optical mapping. Today users of nanopore sequencing are generating reads of 1 megabase and the versatility of the nanopore is giving scientists even newer views of biological activity. The race is still very much on.

The State of Genomics 2018 with Nathan, Laura, and Misha

Our first show of the year is an outlook on genomics for 2018. To do this we’re joined by our regular commentators, Nathan Pearson and Laura Hercher, and also by a special guest to mix things up a bit, Misha Angrist, Associate Professor at Duke University and Editor in Chief of Genome Magazine.

Misha wrote a seminal book on the rise of next gen sequencing and personal genomics (Here is Human Being: At the Dawn of Personal Genomics). After working at Knome, Ingenuity, and the New York Genome Center, Nathan recently founded his own company, Root, which works closely with tissue donor registries to give back DNA information to consumers for free. Laura is recognized as a leader in the field of genetic counseling, being a counselor herself and training many of today's working counselors.

Join us as we ask, where are we in genomics today?

A New “Middle Way” for Genomics, with Physical Chemist, Yuval Ebenstein

“I love low tech,” says today’s guest.

It’s not your typical catch phrase for 2017. But then today’s guest is not your typical genome scientist.

A professor in the Department of Chemical Physics at Tel Aviv University in Israel where he runs the NanoBioPhotonix Lab, Yuval Ebenstein came to the genome from an unusual direction. As a physical chemist he started working with DNA as “just a material.”

The low tech is the method of visualizing genomes with microscopy, such as the old FISH or cytogenetic experiments. However, with the advances in imaging and single molecule analysis, he can now go far beyond these dated methodologies and "take dense chromosomes and stretch them out and read information along them in a very sensitive and informative way that is not accessible to other established genomics techniques."

“I love low tech and then giving it a little twist and turning it into high tech," he adds.

Yuval calls the twist a new “middle way” in genomics, between the large structural cytogenomics of the past and all the specific base calling going on now with next gen sequencing. Will his lab’s work turn into a new instrument able to be commercialized?

He says that PacBio, Oxford Nanopore, and BioNano are making headway in filling in this third or middle way, but that yes, there are new techniques that everyone should be able to use.

One specific paper Yuval’s group has recently preprinted is a method for isolating and cloning very long fragments of DNA using Cas9, or what his group calls CATCH (Cas Assisted Targeting of Chromosome Segments).

“This is a nice demonstration of taking low tech and reviving it,” he says.

It’s also an example of what Yuval says is the problem today with NGS, which is too much data.

To look at certain regions of the genome, such as BRCA, one does whole genome sequencing, or exome sequencing and ends up with a confusing amount of data. With CATCH, he suggests one can take advantage of CRISPR to isolate just the target DNA one is looking for. As our audience will know, most of the methods we use today, say in cancer diagnostics, are looking “under the lamppost,” using templates of known mutations rather than being able to discover what’s actually there.

“You could PCR out large pieces of the genome, but it’s hard and tedious, because you need a lot of primer sets. If it’s a very variable region like BRCA, you may have problems with your primer design, which won’t fit. This is another, hopefully more elegant way of taking out the intact region of interest of the genome and analyzing it very deeply,” he says.

Yuval’s lab is one to keep on our radar.

We've Become Too Single Variant Centric, Says Deanna Church on Genome Analysis

From 1999 to 2013, Deanna Church was a staff scientist at the NCBI where, for a time, she headed the Genome Reference Consortium. This was the effort to continually update, improve and maintain the reference genome. Then Deanna went into private industry, first to Personalis--a genome interpretation company, and now she’s Director of Applications at 10X Genomics--the tools company offering linked read sequencing technology. Deanna's work in the public and private genomics domains has given her a comprehensive and even profound knowledge of the human genome and an authoritative ease in communicating about it.

When we asked about the recent paper out by the 1000 Genomes Project—which includes her name as author—that brings to light hundreds of heretofore unknown structural variants, she says this:

“What I think would be really great is to see the community move toward the integration of structural variant calling and short variant calling. These still tend to be very separate. This paper, of course, only dealt with structural variant calling because it's a very challenging problem. Many times the [different] variant calls end up in separate files. What you’d really like to do is have a wholistic view. Analyzing the whole genome and thinking about how all the variants go together will be an important step for the community.”

Many of the scientists we talk to often begin at a tools company and then move on to an institution where they can work with an array of tools. Deanna has gone the other direction. But she says that working at 10X has “expanded her inner scientist.” There she has access to a lab which wasn't the case at the NCBI and is challenged by an array of hard scientific problems brought by customers of their linked read technology.

So what is new in the world of linked reads? What are Deanna’s thoughts on the incredible uptick in single cell sequencing applications? And in an age when the NIH’s budget has been threatened, how does she see the roles of private and public genomics institutions playing out?

It’s Deanna Church for the first time on Mendelspod.

Clinicians Show High Demand for Single Cell Sequencing, Says Bobby Sebra of Mt. Sinai

If today's guest were a super hero, he'd be High Resolution Sequencing Man.

Bobby Sebra is the Director of Technology Development at the Icahn Institute of Genomics and Multiscale Biology at Mt Sinai in New York. He has the complete arsenal of DNA sequencers in his lab. He specializes in long read applications, and today he goes into several of those spaces, including infectious disease and oncology.

How has sequencing changed since we last had Bobby on a couple years ago, and how does he see it changing in the next two years?

Bobby says the technology hasn't so much changed as the sequencing user has. The user is becoming more savvy, more knowledgeable and familiar with the diversity of options. And the biggest trend has been the uptick in single cell sequencing. Beyond that, Bobby has been surprised that the highest demand for single cell sequencing has been coming from clinicians more than from other scientists.

"I wouldn't have predicted it. The clinical community is excited about seeing it come their way for applications like liquid biopsy and the progressive and prospective surveillance of an individual over time," he says.

Finally, one might think that being located in a city like New York would mean access to the greatest variety and range of data for genomics research. But of course there is better. Bobby and his colleagues have formed a new company they're calling Sema4, to open up the data gates to the rest of the world.

September 2017 with Nathan and Laura: Venter Blunder, RNAi Returns, and Monthly Science Moments

To honor Laura's pentametric thirst,

We write the summary today in verse.


Was it a quake that had no epicenter,

That silly paper out by J. Craig Venter?


And after years of silencing the market

Has RNAi at last knocked out its target?


Then Nathan gives to yuppies devil's choice.

Which one libs: gluten dough or GMOs?


Exploring the Exome and the Future of Genomics with Jay Shendure

Back in 2009, University of Washington professor, Jay Shendure, wrote a definitive paper offering up a roadmap for exome sequencing. Since then, the cost of sequencing has come down so far that many have debated whether or not to do whole genome sequencing vs. just the exome.  

As it turns out, the exome, as a unit, has been very fruitful for both clinicians and scientists, particularly in the area of rare disease discovery and diagnosis. Most genetic testing companies these days have the exome on their product lists.

In today's program, Jay says that we are still in the heyday of the exome; there is still much low hanging fruit.   However, some eight years after his landmark paper, he warns we will soon come to the end of that cycle.

“There clearly is a lot that we haven’t explained. But doing the same thing over and over again isn’t going to get us there. We’ve got to take a step back and systematically investigate the various explanations for the keys that aren’t clearly labeled and not under the lamppost.”

What are some examples of new hypotheses for decoding the genome? Jay points to searching in non-coding regions, epigenetic mechanisms, somatic mosaisicm, and di-genic mutations.

As we go ever deeper into the genome, what are Jay's thoughts on the need for going wider with lots of genomes? And is he on the same page with his UW colleague, Evan Eichler, when it comes to long reads?

Jay is a scientist's scientist. Coming out of George Church's lab at Harvard, he's worked over the years on new methods for genomicists. One of his latest projects dives into developmental biology. He says we've spent a lot of time looking at the "what" of genomics. Now it's time to look at the “how” and “why."

Will This New Nano Technology Be the Microarray of Genomic Structural Variation? Barrett Bready, Nabsys

Barrett Bready is back on the program. He’s the CEO of Nabsys, a company with some new technology for genome mapping.

Originally Nabsys had been working to develop nanopore sequencing, but after a recent reboot has become focused on scaling up scientists' ability to read structural genomic information. Barrett compares Nabsys’ new multiplex technology for genome mapping to the improvement of arrays over single nucleotide (SNP) detection.

"When we first started we were using solid state nanopores. And we realized that there were limitations to nanopores. Nanopores don’t multiplex well. If you have two nanopores very close to each other and a DNA molecule goes through nanopore number one, the signal in nanopore number two will be effected. So we developed our proprietary nano-detector that can be multiplexed at really high density.”

With long read sequencing now gone mainstream coupled with a growing interest among genome scientists in structural variation, Barrett says Nabsys has a chance to enter the marketplace competing on price and throughput and will have their instrument ready for beta testing early next year.

New to Mendelspod?

We advance life science research, connecting people and ideas.
Register here to receive our newsletter.

or skip signup