structural variation

Will This New Nano Technology Be the Microarray of Genomic Structural Variation? Barrett Bready, Nabsys

Barrett Bready is back on the program. He’s the CEO of Nabsys, a company with some new technology for genome mapping.

Originally Nabsys had been working to develop nanopore sequencing, but after a recent reboot has become focused on scaling up scientists' ability to read structural genomic information. Barrett compares Nabsys’ new multiplex technology for genome mapping to the improvement of arrays over single nucleotide (SNP) detection.

"When we first started we were using solid state nanopores. And we realized that there were limitations to nanopores. Nanopores don’t multiplex well. If you have two nanopores very close to each other and a DNA molecule goes through nanopore number one, the signal in nanopore number two will be effected. So we developed our proprietary nano-detector that can be multiplexed at really high density.”

With long read sequencing now gone mainstream coupled with a growing interest among genome scientists in structural variation, Barrett says Nabsys has a chance to enter the marketplace competing on price and throughput and will have their instrument ready for beta testing early next year.

When Long Reads are Double the Price of Short Reads, Short Reads Are Dead, Says Evan Eichler

Each year at this time, sequencing tools leader, Illumina, generates another round of sequencing buzz in the industry, this year by announcing the $100 genome is around the corner with their latest boxes. But more and more, people are asking just what they will get with that $100. Indeed, what do they get today with a $1,500 genome?

Illumina sells short read sequencing technology which is unable to characterize much of the human genome, particularly complex regions which are responsible for many of the known and unknown diseases.

Today’s guest has made his career studying structural variation of the genome. He’s done it with the rapidly improving long read sequencing technology, mostly on instruments produced by Pacific Biosciences. He says researchers have been seduced by the ability to sequence thousands and tens of thousands of genomes as opposed to understanding five or ten genomes really well.

Evan Eichler is a professor of genomics at the University of Washington and first made his name known back with the original Human Genome Project. In the final days of the project, he was brought into the NIH to analyze the genome for structural variation repeats. Neither the private Venter enterprise nor the public attempt had the ability to see them at the time, and with what Evan calls his “young, stupid naivety," he waded into the project. He was able to compare data from the two groups without getting too caught up in the politics and ended up making an important contribution to the final output. Today Evan has established himself so well in the structural variation space that it is said no project into structural variation can be conceived without him.

“Work that we have done over the past couple years has shown that if you apply a new sequencing technology like long reads, you basically uncover 90% of the structural variation that is missed by short read sequencing technology.”

That’s a big number.

“That is a big number,” says Evan, “so the question is, how important are structural variations? That’s open to debate.”

Evan says there is data which shows that structural variant level changes are likely to be more impactful than those of single nucleotide variants (SNVs). He compares SNVs to little tremors and structural changes to earthquakes when it comes to regulating the genome.

As with his mentor, Jim Lupski, (featured on the program here), Evan is adamant that we must stop using short read technology and aligning to a reference genome. Rather, he says, we must get to the place where we are doing de novo assembly of each genome. We can do that in the research setting now, but we must do that clinically as well.

“If we’re still aligning sequences to a reference genome, and that’s our only way for understanding genetic variation ten years from now, clinically we’ve failed. What we need to think about is how to do this right, and that means understanding all the variation from stem to stern in these genomes."

Why Diversity Is the Only Path Forward: Sarah Tishkoff on African Genomics

Are you lactose tolerant? If you’re of Northern European ancestry this is because of a stretch of DNA in a gene enhancer that developed some 9,000 years ago. That's the same time Northern Europeans began domesticating cattle for milk. If you’re of African ancestry, you may have one of three mutations which appeared independently of the European mutation--and of each other--about 6,000 years ago, again when dairying began.

The genetics around lactose tolerance are a great example of how diverse human populations evolved and how this diversity impacts our health. While many in our field are feeling chagrin at not being able to unlock more secrets in our biology that will lead to medical breakthroughs, some leading researchers are pointing to the need for more diversity in our genomic databases, with a particular emphasis on structural variation.

Sarah Tishkoff began studying African genetics back in graduate school on some cell lines that had been collected and started years before. It was at a conference in Cape Town, South Africa with other geneticists and archeologists and members of the local population where she was asked a question that began her career in Africa. Why are the populations up in Tanzania--those people who speak with clicks--so different from the people not far to the south? Sarah went to Tanzania to find out.

“I had no idea what I was doing at the time. I went to Tanzania and just did it. It was quite an experience going as a woman and leading a team of Africans who were just not used to working with a female leader.”

Since then, the dramatic improvement of sequencing technology has allowed Sarah and her team to do some groundbreaking genetic work, much of which has medical implications. For example, her research into the G6PD gene has shown that for certain African populations common malaria drugs can be toxic.

Because Africans are more genetically diverse and have the oldest genetic lineage, African genetics plays an important part in all human genetics research. It's important that our databases include this diversity. Sarah says the recent work to improve the human reference genome is “a great start” but there’s much more to be done. The three African genomes we pointed out in a recent program, she says, are actually from a common regional ancestor. They only reflect a fraction of the African diversity.

Sarah agrees with those in our field lately who have observed that there are still many mysteries in the genome which have not been unlocked because we’re missing important structural variants.

“I believe that some of these structural variants are going to be functionally super important. They’re going to impact normal variation and disease risk. If we had a more diverse set of reference genomes, then that would be great. People could then go ahead and use short read sequencing and map it back to all these diverse reference genomes. And that’s going to help people in terms of personalized medicine."

The Goal Is De Novo Assembly in the Clinic, Says Jim Lupski, Baylor

Today’s story is one of a personal quest, of groundbreaking science, and the creation of a new movement in human genomics.

Jim Lupski is a professor at Baylor College of Medicine where he’s on the frontline of incorporating genomic research into everyday clinical practice. The story begins with Jim’s own genome, which is perhaps the most sequenced genome ever. Jim's life as a leading genomic researcher has been driven in part for a strong personal reason. He has a rare genetic disease named after three researchers who first defined it, Charcot Marie Tooth Neuropathy.

What began as a personal journey to uncover the source of his own disease led Jim to seminal work that launched the field of structural variation. Working first in the gene-centric mindset of the 90’s, Jim's team discovered the first gene known to be associated with CMT disease, PMP22. But while this gene is related to 70% of the cases, it wasn't the mutation responsible for Jim's own version of CMT. His discovery of that would be some years later, and from a much better picture of his genome.

Find out in today’s interview where Jim thinks we are now in genomic science, and why he says the goal in the clinic should be a de novo assembly.

New to Mendelspod?

We advance life science research, connecting people and ideas.
Register here to receive our newsletter.

or skip signup